Лекция 1 по курсу «Цифровая обработка сигналов» 3 февраля 2025 г.

5. Основы цифрового спектрального анализа.

5.1. Особенности цифрового спектрального анализа методом ДПФ.

- Этапы обработки непрерывного сигнала при Фурье-анализе методом ДПФ.
- Эффект наложения спектров («aliasing»).
- Эффекты растекания спектральных компонент («leakage») и утечки спектра через боковые лепестки окна.
- Паразитная амплитудная модуляция спектра.
- Влияние соседних спектральных компонент.

Лекционный цикл «Цифровая обработка сигналов» 5 курс (магистратура, специалитет)

M01-401, M01-402, M01-403, M01-404, M01-405, M01-406, M01-407, C01-019, M03-402, M03-403

Лектор: Тормагов Тимофей Алексеевич,

tormagov@phystech.edu

9-й семестр (осенний):

«Основы цифровой обработки сигналов» (ФРКТ)

«Цифровая обработка сигналов» (ФАКТ)

Дискретные преобразования сигналов

Интерфейс ввода-вывода систем ЦОС реального времени

Основы цифровой фильтрации

10-й семестр (весенний):

«Цифровая обработка сигналов» (ФРКТ и ФАКТ).

Основы цифрового спектрального анализа

Многоскоростная обработка сигналов

Методы преобразования узкополосных радиосигналов в цифровую форму

- Лекции по понедельникам 13:55—15:20 в 115 КПМ.
- Материалы лекций и новости курса публикуются в LMS

https://lms.mipt.ru/course/view.php?id=3450&type=lecture

и на сайте кафедры <u>http://kprf.mipt.ru/</u>.

Гостевая авторизация student student5xx

• Аттестация

	ФРКТ	ΦΑΚΤ
9 семестр	Основы цифровой обработки	Цифровая обработка
(осенний)	сигналов	сигналов
	(семестровый)	(годовой)
	9 семестр — экзамен	9 семестр — зачет
10 семестр	Цифровая обработка сигналов	10 семестр — экзамен
(весенний)	(семестровый)	
	10 семестр — экзамен	

Зачет или экзамен состоит из письменной и устной части. Письменная часть проводится по индивидуальным билетам, состоящим из теоритического вопроса и двух задач.

Устная часть состоит в обсуждении с экзаменатором своих решений и ответов на дополнительные вопросы по программе курса.

Экзаменатору доступны результаты контрольных работ и решения задач с лекций.

Задачи с лекций

- Типовые задачи для контрольных работ и экзамена (зачета).
- Решения оцениваются с помощью тестов для самопроверки по задачам с лекции в LMS

Контрольные работы

- Форма текущего контроля по курсу.
- Варианты индивидуальные (120). Каждый вариант содержит три задачи.
- Для успешного результата на контрольной работе рекомендуется решать задачи с лекций и разбирать материалы прочитанных лекций.
- В каждом блоке проводится по одной контрольной работе во время одной из лекций. В семестре два блока.

Блок 3.	Основы цифрового спектрального анализа.	
Блок 4.	Многоскоростная обработка сигналов. Методы преобразования узкополосных радиосигналов в цифровую форму.	

Во время контрольной работы студенты могут пользоваться конспектами лекций и справочной литературой, в том числе в электронном виде. Не запрещается (и даже поощряется) использование средств компьютерного моделирования, например, в целях проверки своих решений.

	Дата лекции	Тема лекции	
Блок 3.	Блок 3. Основы цифрового спектрального анализа.		
1	3 февраля	5. Основы цифрового спектрального анализа.	
	2025 г.	5.1. Особенности цифрового спектрального анализа	
		методом ДПФ.	
		Этапы обработки непрерывного сигнала при Фурье-	
		анализе методом ДПФ.	
		Эффект наложения спектров («aliasing»).	
		Эффекты растекания спектральных компонент («leakage»)	
		и утечки спектра через боковые лепестки окна	
		Влияние соседних спектральных компонент.	
		Паразитная амплитудная модуляция спектра.	
2	10 февраля	5.2. Примеры оконных функций для спектрального	
		анализа.	
		Примеры оконных функций и их характеристики:	
		Прямоугольное окно, окна Бартлетта, Ханна, Хэмминга,	
		Блэкмана, Кайзера, Чебышева, окно с плоской вершиной.	
		Конструирование оконных функций, обобщенное	
		косинусное окно.	
3	17 февраля	5.3. Особенности применения оконных функций в	
		спектральном анализе методом ДПФ.	
		Условия различения соседних гармонических компонент	
		одинаковой амплитуды	
		Эквивалентная шумовая полоса (ЭШП) оконной функции.	
		Когерентное усиление и усиление преобразования	
		в спектральном анализе.	
		Примеры задач оценивания параметров сигнала.	
		Решение задач: различимость спектральных компонент,	
		маскировка слабои гармоники боковыми лепестками окна.	
4	24 февраля	5.4. Быстрое преобразование Фурье.	
		Алгоритм Ы Ф с составным основанием. Алгоритмы БПФ с	
		основанием 2.	
		Алгоритмы Ы Ф с постоянной структурой. Разбиение	
		N-точечного ДПФ на два N/2-точечных.	

		Матричная форма ДПФ. Алгоритм БПФ с основанием 4. Высокоскоростная свертка с использованием БПФ. Измерение спектра в ограниченном секторе z-плоскости с использованием БПФ.
5	3 марта	 5.5. Алгоритм Герцеля. Вычисление спектра на некотором подмножестве отсчётов ДПФ. БИХ-фильтр второго порядка для рекурсивного вычисления по алгоритму Герцеля. 5.6. Скользящий спектральный анализ в точках z-плоскости. КИХ-фильтр для скользящего спектрального анализа в одной точке . Структура фильтра однобинового скользящего ДПФ. 5.7. Кратковременное дискретное преобразование Фурье (STFT).
6	10 марта	Своиство COLA (Constant OverLap-Add). 5.8. Случайные процессы (краткое введение). Спектральная плотность мощности. Теорема Винера– Хинчина. Фильтрация случайных процессов. Корреляционная функция узкополосного сигнала. 5.9. Дискретизация случайных сигналов. Теорема Котельникова. Дискретный случайный процесс. Восстановление случайного сигнала по дискретным отсчетам.
7	17 марта	5.10. Непараметрические методы спектрального анализа случайных последовательностей. Оценка спектральной плотности мощности. Основные показатели качества оценок СПМ. Метод периодограмм Шустера. Выделение гармоник из шума в периодограмме. Метод периодограмм Бартлетта. Метод периодограмм Уэлча. Коррелограммный метод оценки СПМ.
8	24 марта	Контрольная работа №3 (Основы цифрового спектрального анализа, БПФ, ДВПФ, ДПФ).

Блок 4	Блок 4. Многоскоростная обработка сигналов, методы преобразования		
узкопо	узкополосных радиосигналов из аналоговой формы в цифровую.		
9	31 марта	6. Многоскоростная обработка сигналов.	
		6.1. Система однократной интерполяции.	
		6.2. Система однократной децимации.	
		6.3. Система однократной передискретизации.	
10	7 апреля	7. Методы преобразования узкополосных радиосигналов	
		из аналоговой формы в цифровую.	
		7.1. Квадратурная дискретизация.	
		Синфазная и квадратурные компоненты сигнала и метод	
		их получения. Комплексная огибающая и ее спектр.	
		Дискретизация квадратурных компонент. Формирование	
		отсчетов квадратур из отсчетов полосового колебания.	
11	14 апреля	7.2. Дискретизация аналитического сигнала.	
		Аналитический сигнал. Преобразование Гильберта. Схема	
		дискретизации аналитического сигнала. Повторение	
		спектра при дискретизации аналитического сигнала.	
		Идеальные восстанавливающие фильтры. Сложности	
		реализации преобразователя Гильберта. Примеры	
		вычисления преобразования Гильберта. Ряд Котельникова	
		для узкополосного сигнала.	
12	21 апреля	7.3. Субдискретизация полосовых радиосигналов.	
		Перенос спектра между зонами Найквиста при	
		субдискретизации. Случай целочисленных полос. Случай	
		нецелочисленных полос.	
13	28 апреля	Контрольная работа №4 (Многоскоростная обработка	
		сигналов, преобразование Гильберта, методы	
		преобразования узкополосных радиосигналов из	
		аналоговой формы в цифровую, субдискретизация).	
14	5 мая	Доп. лекция: Введение в вейвлет-анализ.	
15	12 мая	7.4. Формирование полосы обработки в цифровом виде.	
		Консультация. Подготовка к экзамену.	

Основная литература

1. Романюк Ю.А. Основы цифровой обработки сигналов. Учебное пособие. Часть 1. М.: МФТИ, 2007.

2. Романюк Ю.А. Дискретное преобразование Фурье в цифровом спектральном анализе. Уч. пособие. М.: МФТИ, 2007.

Дополнительная литература

 Солонина А.И. Цифровая обработка сигналов в зеркале МАТLAB: учеб. пособие. — СПб.: БХВ-Петербург, 2021. — 560 с.: ил.
 Цифровая обработка сигналов / А. Оппенгейм, Р. Шафер; пер. с

англ. под ред. С. Ф. Боева — 3-е изд., испр. — М.: Техносфера, 2019 .— 1048 с.

Все печатные учебные пособия ([1–4]) есть в библиотеке МФТИ

Вычисление спектра дискретизованного сигнала с помощью ДПФ

Вычисление спектра дискретизованного сигнала с помощью ДПФ

Спектр дискретизованного сигнала $X_{\mu}(f)$ определяется с помощью ДВПФ через выборки x[k]:

$$X_{\mathrm{d}}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k\Delta t),$$
$$x[k] = \frac{1}{f_{\mathrm{d}}} \int_{-f_{\mathrm{d}}/2}^{f_{\mathrm{d}}/2} X_{\mathrm{d}}(f) \exp(j2\pi f k\Delta t) df.$$

Отметим, что в рассматриваемом нами случае дискретизованной сигнал представлен конечным числом отсчетов x[k], k = 0, 1, ..., N-1.

Как правило, мы можем определить ДВПФ лишь в N точках на оси частот $f_n = n \frac{f_{\pi}}{N} = n \Delta f$, $n \in Z$ на одном периоде по оси

частот, например на [0; $f_{_{\rm I}}$). Тогда мы вычисляем

$$X_{_{\mathcal{I}}}(n\Delta f) = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right), \$$
для $n = 0, 1, \dots, N-1.$

Заметим, что мы получили формулу прямого ДПФ, т.е. $X[n] = X_{\mu}(n\Delta f)$. ДПФ представляют собой выборки спектра дискретизованного сигнала, взятые с шагом $\Delta f = f_{\mu} / N$. Шаг по частоте Δf определяет разрешение по частоте.

Пример.

$$y[k] = \sin\left(2\pi \frac{10.5}{32}k\right), \ k = 0, 1, \dots, N-1, \ N = 32$$

Zero Padding

Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал (Zero Padding)

Если частотное разрешение недостаточно для анализа, то мы можем его увеличить дополнив рассматриваемую последовательность нулевыми отсчетами. Добавление нулевых отсчет никак не изменяет сам дискретный сигнал и его ДВПФ, однако увеличивает размерность ДПФ, а значит и число точек, в которых мы вычисляем спектр. Пусть сигнал дополнен нулями до M отсчетов, M > N. Тогда

$$X_{\mu}(n\Delta f) = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{M}nk\right), \$$
для $n = 0, 1, ..., M-1.$

Растояние между соседними отсчетами ДПФ будет уже $\Delta f = f_{\pi} / M$ (в нормированных частотах $\Delta v = 1 / M$), где M является новой размерностью ДПФ.

Пример.

$$y[k] = \sin\left(2\pi \frac{10.5}{32}k\right), \ k = 0, 1, \dots, N-1, \ N = 32$$

Оценка спектра исходного сигнала с помощью ДПФ

Оценка спектра исходного сигнала с помощью ДПФ

Отчету N- точечного ДПФ с номером n в случае сигнала конечной длительности соответствует значение ДВПФ в точке v = n/N по оси нормированных частот:

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N}=X[n].$$

Учитывая, что $v = f / f_{\pi} = f \Delta t$, где f_{π} – частота дискретизации, Δt – шаг дискретизации, получаем, что отсчету с номером n соответствует частота $f = nf_{\pi} / N = n / (N\Delta t)$ Гц. Разрешение по оси частот при ДПФ анализе составляет f_{π} / N Гц.

Заметим, что $f = nf_{\pi} / N$ Гц – это частота в спектре дискретизованного сигнала, который при отсутствии наложения спектров образуется путем периодического продолжения (повторения) спектра исходного аналогово сигнала с периодом, равным частоте дискретизации (f_{π} в случае оси в Гц или 1 в случае оси нормированных частот). Это означает, что отсчет ДПФ с номером n будет соответствовать в спектре аналогового сигнала частоте $f \in [-f_{\pi} / 2; f_{\pi} / 2]$, такой, что $f = (n + mN)f_{\pi} / N$, где m – целое число.

Этапы обработки непрерывного сигнала при Фурье-анализе методом ДПФ

компоненты сигнала x(t) выше частоты Найквиста $f_{\pi}/2$.

Следующий за ним аналого-цифровой преобразователь (АЦП) выполняет операции дискретизации по времени и квантования выборок сигнала по уровню. На выходе АЦП будет цифровой сигнал x[k], представленный последовательностью отсчетов.

Во многих случаях длительность сигнала x(t) велика, поэтому перед вычислением ДПФ последовательность отсчетов x[k] умножается на временное окно w[k] длительностью N.

В результате получается конечная последовательность y[k] = x[k]w[k], которой в частотной области соответствует периодическая свёртка

$$Y(\mathbf{v}) = \int_{-1/2}^{1/2} X(\tilde{\mathbf{v}}) W(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}}.$$

Здесь $v = f \Delta t = f / f_{\pi}$ – нормированная частота (доли частоты дискретизации), X(v) - ДВПФ (спектр) сигнала x[k], W(v) - ДВПФ оконной функции w[k].

Эффект наложения спектров («aliasing»)

Эффект наложения спектров («aliasing»)

Дискретизация сигнала x(t) по времени с шагом Δt приводит к периодическому повторению исходного спектра X(f) с периодом, равным частоте дискретизации $f_{\rm q} = 1/\Delta t$.

Полезная информация содержится в полосе $[-f_{\pi}/2, f_{\pi}/2].$

Если не принять специальных мер, возникает эффект наложения, в результате которого все частоты в спектре сигнала, превышающие половинную частоту дискретизации, как бы отражаются от этой частоты и переносятся на более низкие частоты, искажая исходный спектр.

Для устранения этого эффекта сигнал перед дискретизацией предварительно пропускают через низкочастотный фильтр, частота среза которого равна $f_{\rm c} \leq f_{\rm m}/2$. Частота $f_{\rm m}/2$ в зарубежной литературе называется частотой Найквиста.

Шум квантования АЦП

Шумы квантования неизбежно проявляются, поскольку, как правило, разрядность чисел для представления отсчетов, ограничена. В лекциях осеннего семестра мы получили формулы для стандартного *n*-разрядного АЦП:

• отношение «сигнал/шум» (SNR — Signal to Noise Ratio) SNR = 6,02n + 1,76 (дБ) • относительный уровень шума квантования

$$\gamma = -6,02n - 1,76$$
 (дБ)

Пример. На рисунке приведена оценка спектра сигнала, состоящего из отрезка синусоиды, полученная цифровым осциллографом PV6501 с *n* = 8 битным АЦП с использованием окна Ханна. Относительный уровень шума квантования в дБ будет

$$\gamma = -(6,02n+1,76)$$
дБ ≈ -50 дБ.

Проводить измерения сигналов и их спектров ниже этого уровня бессмысленно.

Эффекты растекания спектральных компонент («leakage») и утечки спектра через боковые лепестки окна

Эффект растекания спектральных компонент неизбежно возникает при умножении последовательности на оконную функцию. Рассмотрим этот эффект на следующем примере. Предположим, что имеется периодическая последовательность

$$x[k] = \cos(2\pi \frac{3}{16}k).$$

ДВПФ этой последовательности

$$X(v) = \sum_{n=-\infty}^{\infty} \frac{1}{2} \delta(v - \frac{3}{16} - n) + \frac{1}{2} \delta(v + \frac{3}{16} - n)$$

 $X(\mathbf{v})$ содержит по две δ -функции с весами 1/2 на периоде.

Предположим, что используется прямоугольное окно длиной в N = 15 отсчетов и для дальнейшего спектрального анализа используется сигнал y[k] = x[k]w[k].

 $W(\mathbf{v}) = e^{-j(N-1)\pi\mathbf{v}} \frac{\sin(N\pi\mathbf{v})}{m}$ $sin(\pi v)$ 16 12 (v)W w[k]8 0 / / / / / / **V**MM Ω 15 0.0 5 10 -0.50.5 0 ν

Для прямоугольного окна спектр мы ранее вычисляли

ДВПФ последовательности *у*[*k*] может быть представлено в виде циклической свертки

$$Y(\mathbf{v}) = \int_{-1/2}^{1/2} X(\tilde{\mathbf{v}}) W(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}} = \int_{-1/2}^{1/2} W(\tilde{\mathbf{v}}) X(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}}$$

Используя фильтрующее свойство дельта-функции

$$\int_{a}^{b} W(\mathbf{v})\delta(\mathbf{v}-\mathbf{v}_{1})d\mathbf{v} = \begin{cases} W(\mathbf{v}_{1}), a < \mathbf{v}_{1} < b, \\ 0.5W(\mathbf{v}_{1}), (\mathbf{v}_{1}=a) \cup (\mathbf{v}_{1}=b), \\ 0, (\mathbf{v}_{1} < a) \cup (\mathbf{v}_{1} > b), \end{cases}$$

получаем, что

$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16})$$

Тот же рездультат можно получить через теорему смещения:

$$y[k] = \left(\frac{1}{2}\exp(j2\pi k\frac{3}{16}) + \frac{1}{2}\exp(-j2\pi k\frac{3}{16})\right)w[k],$$
$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

В итоге

$$Y(v) = \frac{1}{2} \exp\left(-j(N-1)\pi(v-\frac{3}{16})\right) \frac{\sin(N\pi(v-\frac{3}{16}))}{\sin(\pi(v-\frac{3}{16}))} + \frac{1}{2} \exp\left(-j(N-1)\pi(v+\frac{3}{16})\right) \frac{\sin(N\pi(v+\frac{3}{16}))}{\sin(\pi(v+\frac{3}{16}))}.$$

Эффект растекания спектральных компонент заключается в том, что дельта-функции в спектре сигнала «размываются» в спектральные максимумы.

Помимо этого, наблюдается **эффект утечки спектра через боковые лепестки** прямоугольного окна, который приводит к появлению боковых выбросов.

Как видно из приведённого примера, из-за ограничения длительности сигнала мы наблюдаем не только размытые спектральные максимумы, но и боковые выбросы, вызванные влиянием боковых лепестков окна.

Примечание. Физик Франц Артур Фридрих Шустер (нем. Franz Arthur Friedrich Schuster; 1851—1934), называл их "ложными периодичностями". Многие исследователи его времени ошибочно утверждали, эти максимумы обусловлены скрытыми периодичностями в сигнале. Шустер увидел здесь аналогию с дифракционными полосами в оптическом спектроскопе, которые возникали из-за ограниченной апертуры прибора.

Эффект утечки спектра можно ослабить путем применения оконной функции, отличной от прямоугольной. В качестве примера рассмотрим окно Ханна.

Предположим, что нужно вычислить ДВПФ для одного периода последовательности $x[k] = \cos\left(2\pi \frac{3}{16}k\right)$, т.е. для последовательности $y[k] = x[k]w_{Xahha}[k]$, где

Применение окна Ханна позволило снизить уровень боковых лепестков по сравнению сих уровнем в случае прямоугольного окна. Однако это даётся ценой расширения главного лепестка спектрального окна W(v), что приводит к ухудшению разрешения. Следовательно, должен выбираться компромисс между шириной главного лепестка и уровнем подавления боковых лепестков

Паразитная амплитудная модуляция спектра

Паразитная амплитудная модуляция спектра.

Паразитная амплитудная модуляция искажает амплитуду гармонического сигнала, которую можно оценить с помощью ДПФ анализатора с оконной функцией. В самом неблагоприятном случае частота сигнала находится между соседними бинами ДПФ. Пусть спектр (ДВПФ) оконной функции W(v). Коэффициент амплитудной модуляции $K_{\text{мод}}$, выраженной в децибелах, определяется как

$$K_{\text{мод}} = 20 \lg \left| \frac{W(0, 5/N)}{W(0)} \right|.$$

Для прямоугольной функции $K_{\text{мод}} = -3,92 \,\text{дБ}$, для окна Бартлетта $K_{\text{мод}} = -1,82 \,\text{дБ}$, для окна Хэмминга $K_{\text{мод}} = -1,78$ дБ. При этом для окна с плоской вершиной (flattop) $K_{\text{мод}} = -0,02$ дБ. Заметим, что для снижения этой погрешности можно также воспользоваться методом дополнения нулями анализируемой последовательности.

Влияние соседних спектральных компонент

Влияние соседних спектральных компонент.

В этом пункте мы рассмотрим, как эффекты растекания спектральных компонент и утечки спектра через боковые лепестки окна могут повлиять на результат анализа сигнала с несколькими спектральными компонентами.

Пример. Различимость соседних гармоник.

Предположим, что с помощью прямоугольного окна осуществляется ДПФ-анализ гармонической последовательности

$$x[k] = \sin\left(2\pi \frac{10,5}{32}k\right) + \sin\left(2\pi \frac{10}{32}k\right)$$

Относительные частоты входящих в ее состав синусоид $v_1 = 10,5/32, v_2 = 10/32$, расстояние между ними равно $v_{12} = 1/64$. Рассмотрим ДПФ и ДВПФ последовательности $y_1[k] = x[k]w_1[k]$, где $w_1[k] - 32$ точечное прямоугольное окно. ДВПФ $y_1[k]$ в соответствии с теоремой смещения

$$Y_1(v) = \frac{1}{2j}W(v - v_1) - \frac{1}{2j}W(v + v_1) + \frac{1}{2j}W(v - v_2) - \frac{1}{2j}W(v + v_2).$$

Соседние спектральные компоненты не различимы в спектре сигнала (в ДВПФ): два главных лепестка слились в один. Это означает, что дополнением последовательности нулевыми отсчетами мы не сможем добиться различения двух гармоник в спектре. Заметим, что ширина главного лепестка прямоугольного окна на нулевом уровне $\Delta v = 1/16$ в четыре раза больше v_{12} .

Влияние соседних спектральных компонент

Возьмем прямоугольное окно, для которого половина ширины главного лепестка на нулевом уровне равна $v_{12} = 1/64$, т.е. окно $w_2[k]$ длиной в 64 отсчета. Спектральные компоненты различимы в спектре, но не различимы в ДПФ. Однако в данном случае различимость в ДПФ уже можно обеспечить, например, дополнив анализируемую последовательность отсчетов нулями до длины 128. В таком случае расстояние между соседними отсчетами ДПФ будет равно $v_{12}/2 = 1/128$.

Пример. Влияние боковых лепестков соседних компонент.

Боковые лепестки спектрального окна W(v) будут также изменять амплитуды соседних спектральных пиков, что может привести к дополнительному смещению по частоте. Вклад определяется степенью «просачивания» «лишних» спектральных компонент через боковые лепестки и зависит от амплитуды и фазы каждой гармоники, ее положения на сетке частот ДПФ, а также от АЧХ и ФЧХ фильтра. Рассмотрим сумму двух гармонических компонент:

$$x(t) = A_1 \cos\left(2\pi f_1 t\right) + A_2 \cos\left(2\pi f_2 t\right), \quad -\infty \le t \le \infty.$$

Предполагая дискретизацию без наложения спектров, получаем дискретный сигнал:

 $x[k] = A_1 \cos\left(2\pi f_1 k \Delta t\right) + A_2 \cos\left(2\pi f_2 k \Delta t\right), \quad -\infty \le k \le \infty.$

Последовательность y[k], вырезаемая из этого сигнала окном w[k], записывается как

 $y[k] = A_1 w[k] \cos\left(2\pi f_1 k \Delta t\right) + A_2 w[k] \cos\left(2\pi f_2 k \Delta t\right).$

Влияние соседних спектральных компонент

Поскольку нас интересует влияние соседних спектральных компонент, выберем амплитуды и частоты косинусоид достаточно близкими:

 $A_1 = 1, \ A_2 = 0,8, \ v_1 = f_1 \Delta t = 1/14, \ v_2 = f_2 \Delta t = 2/15.$ Пусть w[k]- прямоугольное окно длины 64. В результате

получается

$$y[k] = \begin{cases} \cos 2\pi \frac{1}{14}k + 0, 8\cos 2\pi \frac{2}{15}k, & 0 \le k \le 63\\ 0, & \text{иначе.} \end{cases}$$

Хотя на графике модуля ДВПФ y[k] отчётливо видны два всплеска модуля ДВПФ, амплитуда гармоники с частотой $v_1 = 1/14$ ($A_1/2 = 0,5$) влияет на амплитуду гармоники с частотой $v_2 = 2/15$ ($A_2/2 = 0,4$) и наоборот.

Это взаимодействие гармоник при спектральном анализе изза «размазывания» спектра, вносимого окном, называется рассеянием. При этом нормированная частота $v_1 = 1/14$ попадает между четвёртым и пятым бинами ДПФ, а частота $v_2 = 2/15$ попадает между восьмым и девятым бинами, т.е. для ДПФ анализа спектра требуется дополнение сигнала нулевыми отсчетами.

Задачи с лекции

Задачи для самостоятельного решения

№1. Последовательность x[k] из 1000 элементов получена в результате дискретизации непрерывного сигнала x(t) с частотой $f_{\pi} = 20480$ Гц. Обозначим через X[n] 1024-точечное ДПФ последовательности x[k] (дополненной нулевыми отсчетами). Определить расстояние (в Гц) между непрерывными частотами, которые соответствуют соседним отсчетам ДПФ.

№2. Найти ДПФ₁₆ 16 - точечных последовательностей a) $x[k] = \sum_{m=0}^{15} \mathbf{1}[k-m]$, 6) $y_1[k] = x[k]\cos(2\pi k5/16)$, в) $y_2[k] = x[k]\sin(2\pi k5/16)$.

Для всех пунктов задания изобразить график действительной и мнимой части коэффициентов ДПФ. №3. Вещественный сигнал x(t) с полосой $2f_{\rm B} = 10$ кГц ($f_{\rm B}$ – верхняя граничная частота) дискретизуется с шагом Δt . В результате получается последовательность $x[k] = x(k\Delta t)$. Вычисляется N-точечное ДПФ, где $N = 2^m$, m – натуральное число. Определить минимальное значение m, при котором анализ возможен, а расстояние между отсчетами ДПФ по оси частот в герцах будет меньше 5 Гц. Для этого значения mопределить допустимые пределы для частоты дискретизации $f_{\rm min} < f_{\rm I} < f_{\rm max}$.